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ABSTRACT The development of high-throughput technologies and the resulting large-scale data sets have necessitated a
systems approach to the analysis of metabolic networks. One way to approach the issue of complex metabolic function is
through the calculation and interpretation of extreme pathways. Extreme pathways are a mathematically defined set of
generating vectors that describe the conical steady-state solution space for flux distributions through an entire metabolic
network. Herein, the extreme pathways of the well-characterized human red blood cell metabolic network were calculated
and interpreted in a biochemical and physiological context. These extreme pathways were divided into groups based on such
criteria as their cofactor and by-product production, and carbon inputs including those that 1) convert glucose to pyruvate;
2) interchange pyruvate and lactate; 3) produce 2,3-diphosphoglycerate that binds to hemoglobin; 4) convert inosine to
pyruvate; 5) induce a change in the total adenosine pool; and 6) dissipate ATP. Additionally, results from a full kinetic model
of red blood cell metabolism were predicted based solely on an interpretation of the extreme pathway structure. The extreme
pathways for the red blood cell thus give a concise representation of red blood cell metabolism and a way to interpret its
metabolic physiology.

INTRODUCTION

A constraints-based approach to the mathematical mod-
eling and in silico study of reconstructed metabolic net-
works has been developed (Palsson, 2000). This ap-
proach successively imposes governing constraints on a
biochemical reaction network including connectivity,
thermodynamic irreversibility, and maximum flux capac-
ities to limit the steady-state flux solutions to a closed
solution space (Schilling et al., 1999, 2000). Markedly,
no kinetic parameters are used in defining this space.
However, if the kinetic parameters are known the precise
location of the steady-state flux distribution in the solu-
tion space can be found using a model that involves
simultaneously solving a system of differential equations.
Such comprehensive kinetic models are available for the
human red blood cell (Mulquiney and Kuchel, 1999; Lee
and Palsson, 1991; Joshi and Palsson, 1989, 1990), and
such a precise solution can be calculated.

Steady-state analysis of stoichiometric networks has been
reviewed recently (Schilling et al., 1999) and the steady-
state solution space is a convex hull, or cone, where the
edges are so-called “extreme pathways.” An algorithm to
compute the extreme pathways has been described (Schill-
ing et al., 2000) and applied to the genome-scale metabolic
network of Hemophilus influenzae (Schilling and Palsson,
2000). The extreme pathways for a genome-scale network
are large and challenging to both compute and interpret
(Papin et al., 2002). However, the subsequent imposition of
gene expression regulation significantly reduces the number
of allowable extreme pathways under a given condition
(Covert et al., 2001b).

The difficulties associated with the computation and in-
terpretation of large numbers of extreme pathways for real
metabolic networks have hampered their detailed biochem-
ical and physiological study. These computational issues
arise from both the size and complexity of the metabolic
networks. Although these cone-generating vectors corre-
spond to biochemical pathways that represent steady-state
flux maps, they have yet to be examined in detail for a
biologically realistic metabolic system to determine their
characteristics and usefulness in analyzing and interpreting
integrated metabolic functions. The human red blood cell
provides an attractive case to study the extreme pathways.
Its metabolism contains four basic classical pathways:
glycolysis, the pentose pathway, adenosine nucleotide
metabolism, and the Rapoport-Leubering shunt. Unlike
most metabolic networks, the red cell does not need to
generate biomass; its main task is to produce the neces-
sary cofactors (ATP, NADPH, and NADH) for maintain-
ing its osmotic balance and electroneutrality and fighting
oxidative stresses. The relatively simplistic demands on
the red cell network serve to reduce the system’s com-
plexity and help make the computation of its extreme
pathways manageable. The human red blood cell model
accounts for 39 metabolites and 32 internal metabolic
reactions, as well as 12 primary exchange and 7 currency
exchange fluxes. The extreme pathways of this simple
metabolic network can be readily calculated from the
stoichiometric matrix. Herein we study these extreme
pathways.

MATERIALS AND METHODS

The metabolic network and its
stoichiometric matrix

Thirty-nine metabolites are included in the red blood cell network
(Table 1). To calculate the extreme pathways, those metabolites that can
be exchanged with the system boundary (both as primary exchanges and
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currency exchanges) are identified (Schilling et al., 2000). Primary
exchange metabolites are those that can be thought of as being trans-
ported across the cell membrane and exchanged with the environment
(Fig. 1). Currency exchanges are exchanges of cofactors and metabo-
lites that are produced and used by the metabolic network for such tasks
as running the Na/K Pump (ATP), reducing met-Hemoglobin (NADH),
fighting oxidative stresses to the cell via glutathione reduction
(NADPH), and regulating hemoglobin oxygen affinity (2,3-DPG). The
elemental composition of each metabolite in the network is given in
Table 2 and it is used to ensure that every reaction in the network is
elementally balanced. The metabolic reactions, excluding transporters,
are shown in Table 3. The full red blood cell stoichiometric matrix is

derived from these reactions and the corresponding metabolic map is
shown in Fig. 1.

Extreme pathway calculation and classification

The extreme pathways are calculated based on:

S � v � 0 vi � 0, @i

where S is the red blood cell stoichiometric matrix. We constrain all
fluxes (vi) to be positive so that no reaction can be run “negatively,”
violating the laws of thermodynamics. Thus, reversible reactions are

TABLE 1 The net reactions for all type I and type II (DIS1-3) extreme pathways including both primary and currency exchange
fluxes. Net reactions include system inputs (negative integers) and outputs (positive integers), and do not include
internal reactions

P_# GLC PYR LAC HX ADE ADO INO 23DPG ADP ATP NAD NADH NADP NADPH PI CO2 H NH3 H2O

GP1 �1 2 �2 2 �2 2 �2 2 2
GP2 �1 1 �1 1 �1 1 �6 6 �1 3 7 �2
GP3 �3 5 �5 5 �5 5 �6 6 �5 3 11 2
GP4 �2 5 1 �1 �6 6 �5 5 �4 4 �6 2 8 3
GP5 �1 2 �2 2 4
GP6 �1 1 �1 1 �6 6 3 8 �3
GP7 �3 5 �5 5 �6 6 3 16 �3
GP8 �2 5 1 �1 �1 1 �5 5 �4 4 �1 2 13 �2

PL1 1 �1 �1 1 1
PL2 �1 1 1 �1 �1

DPG1 �1 2 2 �2 �2 2 �2 6
DPG2 1 �1 1 �1 1 �4 4 �2 2 6 �2
DPG3 3 �3 5 2 �2 �5 5 �8 12
DPG4 �1 1 1 �1 �1 1 �6 6 �1 3 9 �3
DPG5 �3 5 5 �5 �5 5 �6 6 �5 3 21 �3
DPG6 �2 1 �1 5 4 �4 �5 5 �4 4 �6 2 18 �2

IP1 5 3 �3 �8 8 �5 5 �8 2 5
IP2 1 1 �1 �2 2 �1 1 �4 4 �2 2 4 �1
IP3 5 3 �3 �3 3 �5 5 �3 7
IP4 1 1 �1 �1 1 �1 1 �4 4 �1 2 5 �2

SP1 1 �1 1 �1 3 2 2 �5
SP2 1 �1 2 �1 �1 3 2 �3
SP3 1 �1 �1 4 �3 1 �1

GA1 �5 �6 30 �24 12 6 �6
GA2 �1 �1 5 �4 �2 2 2 1 3 �2
GA3 �5 �6 12 6 �12 24 18 12 �30
GA4 �1 �1 2 1 �2 �2 2 4 1 5 2 �6
GA5 �5 �6 12 6 �12 24 18 �18
GA6 �1 �1 2 1 �2 �2 2 4 1 5 �4

IA1 1 �1 3 2 �3
IA2 1 �1 3 2 1 �4
IA3 1 �2 1 1 1 �1
IA4 1 �2 1 1 1 1 �2
IA5 �1 3 �2

AI1 �1 1 1 �1
AI2 �1 1 1 �1 1 1 1 �2

DIS1 1 �1 1 1 �1
DIS2 1 �1 1 1 �1
DIS3 2 �2 2 1 �2
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broken down into their forward and backward components (Schilling
and Palsson, 1998). Any steady-state flux distribution (v) within the
cone can be described as a nonnegative linear combination of the
extreme edges of the cone:

v � �
i�1

n

�ipi, �i � 0

where the extreme pathways (pi) are a set of generating vectors that
describe a conical solution space (Schilling et al., 1999).

Extreme pathways can be divided into three main categories: type I,
which are through pathways that utilize primary exchange fluxes as defined
in Table 2; type II, which are futile cycles that only utilize currency
exchange fluxes and degrade charged cofactors such as ATP; and type III,
which are simply reversible reactions with no exchange fluxes involved
(Schilling et al., 1999). Note that the type I pathways include traditional
pathways with a single substrate in and a single product out, and the
simultaneous production of cofactors.

RESULTS

Extreme pathway structure of the red blood cell

The computation of the extreme pathways for the red blood
cell metabolic network resulted in 36 type I, 3 type II, and
16 type III extreme pathways. The type I and II extreme
pathways are of most interest and will be focused on herein.
The net reactions (exchanges only) are contained in Table 1
for both type I and II extreme pathways.

The type I and II extreme pathways can be described in
detail based on their function and corresponding steady-
state flux map. The complete collection of all 39 steady-
state flux maps referred to below can be found in Fig. 5.

Glucose to pyruvate (GP)

These pathways show three basic routes from glucose to
pyruvate: classic glycolysis (GP1), glycolysis and cyclic
pentose phosphate metabolism (PPP) (GP2), and glycol-
ysis and PPP (GP3). GP1 produces the standard two ATP,
two NADH, and two pyruvate from one glucose mole-
cule. GP3 enters the PPP (bypassing PGI) where carbon
is lost to CO2 but NADPH is produced. The net result is
a decrease in the net production of ATP, NADH, and
pyruvate per glucose molecule, as compared to GP1, in
exchange for the production of the glutathione reducing
cofactor NADPH. GP2 takes GP3 a step further and
actually cycles through PPP repeatedly, causing an even
greater loss of carbon through the decarboxylation reac-
tion of PDGH, but an increase in the production of
NADPH in addition to the single ATP, NADH, and
pyruvate formed per glucose molecule. Each of these
three pathways has a nearly identical twin pathway (GP5,
GP6, GP7) that utilizes the 2,3-DPG shunt (DPGM and
DPGase) as opposed to the ATP producing reaction cat-
alyzed by PGK. The cell can use the shunt to curb its
ATP production. GP4 supplements the glucose substrate
with inosine to ultimately produce the cofactors ATP,
NADH, and NADPH, as well as pyruvate. However, due
to the low transport rate of inosine (Vmax in Table 3), this
is a low-flux pathway. GP4 has a mirror image pathway
(GP8) in which the 2,3-DPG shunt is utilized instead of
PGK.

Pyruvate/lactate conversion (PL)

Pathways PL1 and PL2 represent the reversible conver-
sion between pyruvate and lactate that can occur in the
cell and ultimately is used to balance the NAD/NADH
ratio. Note that in the homeostatic steady state there is no
load on NADH and the red blood cell utilizes PL2 to
completely balance all NADH produced via any GP
pathways utilized.

2,3-DPG production (DPG)

The basic routes of four of these pathways (DPG1 and
DPG4–6) are identical to those from group I (GP5–8), the
only difference being that instead of simply diverting flux
through the shunt and back into main glycolysis, 2,3-DPG is
siphoned off for use in the regulation of the oxygen affinity
of hemoglobin. In addition, DPG2 and DPG3 utilize inosine

FIGURE 1 The red blood cell metabolic map depicting the classical
pathways of glycolysis, the Rapoport-Leubering shunt, the pentose phos-
phate pathway, and adenosine metabolism (demarcated by the dashed
lines). In addition, exchange fluxes with the system boundary are defined
that include substrates/by-products, small molecules, and cofactors. Inter-
nal usage reactions for NADPH, NADH, ATP, and 2,3-DPG are also
depicted. Note that the map does not include the F26BP bypass, which does
not significantly change the extreme pathway analysis of the system; it
simply adds another type II futile cycle that dissipates ATP.
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as the sole substrate, with no uptake of glucose (similar to
IP3 and IP4 described below).

Inosine to pyruvate (IP)

These pathways (IP1–4) mirror GP1, GP2, GP5, and GP6,
respectively, with the only difference being that inosine is
used as the sole substrate instead of glucose. Inosine is
converted, via adenosine metabolism, into R5P, which en-
ters pentose phosphate metabolism and is eventually con-
verted into pyruvate via glycolysis. Again, these are low-
flux pathways due to the low transport rate for inosine.

Salvage pathways using adenine (SP)

The salvage pathways (SP1–3) combine adenine with a
pentose to alter the adenosine nucleotide pool inventory.

Nucleotide incorporation/removal via glucose
and adenine (GA)

These pathways (GA1–6) use glucose and adenine to adjust
the nucleotide pool size via either the oxidative or non-
oxidative branch of the PPP.

Nucleotide incorporation/removal via inosine
and adenosine (IA)

Similar to the SP group, these pathways (IA1–4) regulate
the adenosine pool size through the uptake/secretion of
inosine and adenosine.

Adenosine to inosine (AI)

These two pathways (AI1–2) simply convert adenosine to
inosine for use in nucleotide metabolism.

TABLE 2 A list of all 39 metabolites included in the red blood cell model

Int. P. Ex. C. Ex. Abbreviation Metabolite Empirical Formula

� GLC Glucose C6 H12 O6
� G6P Glucose-6-phosphate C6 H11 O9 P1
� F6P Fructose-6-phosphate C6 H11 O9 P1
� FDP Fructose-1,6-phosphate C6 H10 O12 P2
� DHAP Dihydroxyacetone phosphate C3 H5 O6 P1
� GA3P Glyceraldehyde-3-phosphate C3 H5 O6 P1
� 13DPG 1,3-Diphosphoglycerate C3 H4 O10 P2

� 23DPG 2,3-Diphosphoglycerate C3 H3 P2 O10
� 3PG 3-Phosphoglycerate C3 H4 O7 P1
� 2PG 2-Phosphoglycerate C3 H4 O7 P1
� PEP Phosphoenolpyruvate C3 H2 O6 P1

� PYR Pyruvate C3 H3 O3
� LAC Lactate C3 H5 O3

� 6PGL 6-Phosphogluco-lactone C6 H9 O9 P1
� 6PGC 6-Phosphogluconate C6 H10 O10 P1
� RL5P Ribulose-5-phosphate C5 H9 O8 P1
� X5P Xylulose-5-phosphate C5 H9 O8 P1
� R5P Ribose-5-phosphate C5 H9 O8 P1
� S7P Sedoheptulose-7-phosphate C7 H13 O10 P1
� E4P Erythrose-4-phosphate C4 H7 O7 P1
� PRPP 5-Phosphoribosyl-1-pyrophosphate C5 H8 O14 P3
� IMP Inosine monophosphate C10 N4 H12 O8 P1
� R1P Ribose-1-phosphate C5 H9 O8 P1

� HX Hypoxanthine C5 N4 H4 O1
� INO Inosine C10 H12 N4 O5
� ADE Adenine C5 H5 N5
� ADO Adenosine C10 H13 N5 O4

� AMP Adenosine monophosphate C10 N5 H13 O7 P1
� ADP Adenosine diphosphate C10 N5 H13 O10 P2
� ATP Adenosine triphosphate C10 N5 H13 O13 P3
� NAD Nicotinamide adenine dinucleotide NAD
� NADH Nicotinamide adenine dinucleotide (R) NAD H1
� NADP Nicotinamide adenine dinucleotide phosphate NADP
� NADPH Nicotinamide adenine dinucleotide phosphate (R) NADP H1

� H Hydrogen Ion H1
� Pi Inorganic Phosphate H1O4 P1
� NH3 Ammonia N1 H3
� CO2 Carbon Dioxide C1 O2
� H2O Water H2 O1

Each metabolite is categorized as internal (Int.), primary exchange (P. Ex.), or currency exchange (C. Ex.). The empirical formula is included for each
metabolite (Lehninger et al., 1993; Stryer, 1988).
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Dissipation of ATP (type II pathways, DIS)

These futile cycles (DIS1–3) serve to dissipate excess ATP

Maximal fluxes through the extreme pathways

Maximum flux capacities of the reactions serve to “cap off”
the steady-state solution cone forming a closed polytope
(Fig. 2 A). Every reaction has an estimated absolute Vmax

value of 1 � 106 molecules/s/�m3 set by physico-chemical
limitations. However, a few enzymes in the metabolic net-
work will have a lower maximum flux capacity, i.e., low
Vmax due to kinetic limitations of the enzyme (Table 3). The
enzyme with the lowest Vmax in an extreme pathway serves
as the “bottleneck” and determines the maximum possible
flux through that extreme pathway. For instance, the low
uptake rate of inosine limits the fluxes through all the
extreme pathways in which it is utilized.

Response to metabolic loads in red blood
cell metabolism

There are four main physiologic loads experienced by the
red blood cell, and the extreme pathways can be interpreted
in terms of these metabolic demands.

1. ATP loads are a combination of the Na/K ATPase-driven
pump used in osmotic and ion balance as well as general
ATP-related cell maintenance. ATP loads are experi-
enced at the normal physiologic steady state as the pump
must constantly be run and cellular volume maintained.
Such loads are modeled by the conversion of ATP to
ADP and Pi. Hence, some combination of extreme path-
ways that convert ADP to ATP must be utilized, which
includes the GPs and the IPs, which is consistent with the

nominal steady state in which �80% of the flux in the
system is through glycolysis (GP1 and GP5), �15% is
through the PPP (GP2–4, GP6–8), and the rest is
through the adenosine reactions (IP1–4). If ATP is pro-
duced by the system in excess, it can be dissipated via
one of the type II futile cycle pathways (DIS1–3);

2. Oxidative loads in the red blood cell are combated via
glutathione reduction, which must then be reoxidized by
NADPH. There is a basal level of oxidative load on the
cell at the physiologic steady state. Oxidative loads are
modeled via the oxidation of NADPH to NADP. Be-
cause NAPDH can only be produced in the oxidative
branch of the PPP, pathways GP2–4 and/or GP6–8 must
be utilized;

3. 2,3-DPG loads are experienced in conditions such as
high altitude, where the oxygen affinity of hemoglobin
must be altered. However, at the physiologic steady state
there is no drain on 2,3-DPG. The only pathways that
produce 2,3-DPG which can be drained from the system
are DPG1–6 which, while not “turned on” in nominal
steady state, will become active under load;

4. NADH loads are used to convert the unusable form of
methylated hemoglobin (met-Hb) into the oxygen-carry-
ing form of hemoglobin. Under normal, steady-state
conditions, however, there is no drain on NADH. Hence,
all the extreme pathways that result in the production of
pyruvate are not technically utilized (GP1–8 and IP1–4).
Rather, these pathways function in tandem with PL2 to
balance NADH and produce lactate (Fig. 3). Note that
such combinations of extreme pathways lie on a “face”
of the conical solution space and represent an elementary
flux mode (Schuster et al., 2000).

Extreme pathways and the interpretation of
physiological responses

The stoichiometry of a metabolic network, and hence the
extreme pathway structure of that network, is relatively easy
to obtain as compared with acquiring detailed kinetic
knowledge about each enzyme in the network. A number of
valuable physiological insights can be obtained from net-
work structure and basic reaction capacity limitations, as the
following examples demonstrate.

Projection of pathways based on production
of key cofactors

The high-dimensional steady-state flux cone as defined by
the extreme pathways can be projected onto a 2-D flux
space (see Fig. 4 A, inset). A projection of interest, Fig. 4 A,
shows ATP and NADPH production by extreme pathways,
which can be interpreted by the fluxes through the ATP and
NADPH use reactions (Fig. 1).

The normal usages of ATP and NADPH in the red blood
cell are �1.5 and 0.3 mM/h, respectively. These usage rates

FIGURE 2 The three extreme pathways of this sample system form a
conical solution space. (A) Full capabilities of the system where the cone
is capped off at the minimum Vmax for each pathway; (B) A simulation of
an enzymopathy in which the maximum flux capacity of v3 is greatly
reduced. This reduction in the maximum capacity results in a shift down
the p3 axis, thus significantly shrinking the size and volume of the steady-
state solution cone, and hence the metabolic capabilities of the system.
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are indicated in Fig. 4 A as the physiological steady state.
The projected extreme pathways that are closest to the
estimated physical steady state are GP1, GP2, and GP3. A
nonnegative linear combination of these pathways engulfs
the physiological steady state with a “load margin,” as
indicated. Thus, the red blood cell would be able to meet

challenges of approximately an additional 0.4 and 3.0 mM/h
loads on ATP and NADPH individually, or a combination
thereof, as indicated in the figure. Since a detailed kinetic
model of RBC metabolism is available (Jamshidi et al.,
2001) one can also dynamically determine the load margin.
The discrete points in Fig. 4 A indicate the load margin of
red blood cell metabolism based on a full kinetic model.
Thus, the extreme pathway structure and enzyme capacities
alone can conservatively determine the ability of the red
blood cell to withstand metabolic challenges.

Change in global adenosine inventory in the red blood cell

There are several extreme pathways that lead to a net
change in the adenosine inventory (i.e., [A] � [AMP] �
[ADP] � [ATP]), including SP1–3, GA1–6, and IA1–5.
The flux through these extreme pathways is restricted to
between 0.01 and 0.03 mM/h because they are all limited by
one or more low effective Vmax reactions, including adenine
(ADE) and adenosine (ADO) transport, and the internal
deaminase reaction catalyzed by AMPDA (Table 3). The
steady-state adenosine inventory in the red blood cell is �3
mM, and thus the time constant associated with changes in
the inventory is (3 mM)/(0.01 mM/h) � 300 h � 12 days.
The slow changes in the adenosine inventory in red blood
cells is known and represents a challenge in blood storage
(Grimes, 1980).

Adjustment in 2,3-DPG concentration

All the pathways that drain the pool of 2,3-DPG must go
through DPGase whose flux is restricted to �0.5 mM/h
(Werner and Heinrich, 1985). Given that the approximate
concentration of 2,3-DPG in red blood cells is 5 mM, this
leads to an estimated 10 h time constant for changes in
2,3-DPG concentration and concomitant adjustment in he-
moglobin oxygen affinity.

SNPs and maximal capacities

The Vmax values of the enzymes serve to “cap off” the
steady-state solution cone (Fig. 2). Changes or alterations in

FIGURE 3 Extreme pathways GP1 and PL2 can be “added” to produce a pathway on the face of the solution cone (an elementary mode) that balances
NADH, as is the case in the physiologic steady state of the red blood cell.

FIGURE 4 Inset: A schematic of how a high-dimensional cone can be
projected into a 2-D plane. (A) Projection of the red blood cell high-
dimensional flux cone as defined by the extreme pathways into a 2-D
cofactor space. The nominal steady-state value is shown by the dashed
arrow. The red blood cell’s capacity to respond to loads (hatched region)
is defined as the difference between the steady-state operating point (black
diamond) and the edge of the solution space representing the maximum
capabilities of the cell (dotted line). Any loads outside the solution space
are not attainable. The results from repeated dynamic simulation of step-
wise increasing energy and oxidative loads on the red blood cell are plotted
on the graph with open black circles using the Jamshidi model (Jamshidi et
al., 2001). Note that the kinetic model is slightly more restrictive than the
stoichiometric one. (B) 2-D projection into the cofactor space in which an
enzymopathy has shortened GP1 to GP1� (decreased the minimum Vmax).
The cell’s ability to respond to energy loads (black hatched region) is
decreased as compared with the normal cell (gray hatched region).

814 Wiback and Palsson

Biophysical Journal 83(2) 808–818



these Vmax values can significantly change the shape of the
steady-state solution space. If all the extreme pathways are
high throughput (i.e., limiting Vmax is large), the solution
space is relatively large (Fig. 2 A). However, as shown in
Fig. 2 B, if one of the Vmax values is low due to some sort
of defect or significant kinetic regulation, the volume of the
solution space shrinks significantly, which reduces the num-
ber of steady-state solutions and hence the number of ho-
meostatic options available to the cell. Thus, Vmax values
can effectively reduce the solution space and eliminate a
large number of possible states of the network. Any enzy-
mopathies that reduce this capacity region will result in a
pathological phenotype in response to challenges that nor-
mal red blood cells would tolerate (Fig. 4 B). Well-defined
polymorphisms reduce the ability of the red blood cell to
respond to oxidative and energy loads (Nagel, 1988; Beut-
ler, 1986). Regulation of gene expression in prokaryotes can
be interpreted in this way as well (Covert et al., 2001b).

DISCUSSION

Extreme pathway analysis has been applied to the human
red blood cell metabolic network. The resulting extreme
pathways were analyzed and classified based on their struc-
ture and functional capabilities. The results of this study are
1) the establishment of a complete set of extreme pathways
for a biologically meaningful system, 2) the finding that
some of the extreme pathways correspond to “classical”
biochemical pathways but most do not, and 3) a demon-
stration that extreme pathways can be used to interpret
the steady-state solution space with respect to network
capabilities.

Previously, extreme pathway analysis was applied to
sample systems without real biological meaning (Schilling
et al., 2000). Such systems helped in establishing the algo-
rithm and interpreting the results, but provided no real
biological insight. At the other extreme, the analysis has
been applied to genome-scale metabolic network, resulting
in an immense number of extreme pathways for which a
detailed interpretation is not possible. Only statistical prop-
erties of these large sets of data could be obtained yielding
limited insight into cellular physiology (Papin et al., 2002).
This red blood cell study represents a situation where the
full set of extreme pathways was calculated, detailed, and
used for physiological interpretation. Scaling such detailed
analysis to a genome-scale represents an unmet challenge in
this field.

The systemic extreme pathways of the red blood cell
metabolic network were fully enumerated and described
(Fig. 5). In contrast to traditional experimental discovery
and heuristic definitions of metabolic pathways, extreme
pathway analysis provides a unique, mathematically defined
way to identify systemically meaningful metabolic path-
ways that may be unintuitive, but no less informative.
Interestingly, “historical” pathways such as glycolysis (GP1

in Fig. 5) and nucleotide salvage pathways (SP1–3 in Fig. 5)
are extreme pathways. However, a majority of the extreme
pathways are nontraditional multiple input-multiple output
pathways such as those in which glucose and inosine are
used in tandem to produce pyruvate and hypoxanthine, as
well as the cofactors ATP and NADH (GP4 in Fig. 5). Such
nontraditional pathways are an example of how extreme
pathway analysis can elucidate systemic properties resulting
from network interconnectedness and complexity, an essen-
tial feature of emerging systems biology.

Extreme pathway analysis can also be used to interpret
and predict the systemic consequences of maximum capa-
bilities of individual reactions in the network (Fig. 4 A); a
priori, a seemingly impossible task for a model based solely
on stoichiometric information. In this case, the maximum
cofactor production capacity of the red blood cell was
conservatively predicted by the extreme pathway structure
and the tolerance to elevated metabolic demands defined.
The incorporation of basic transport and reaction Vmax val-
ues and approximate metabolite concentration data expands
the utility of extreme pathway analysis to include estimation
of time constants with respect to pathway usage and pre-
diction of the effect of enzyme defects on systemic function
(Fig. 4 B).

With the emergence of systems biology comes a need for
new methods for defining and understanding metabolic
pathways as they pertain to network-scale functions. A
recent article by Marcotte begs the question: “Why not
abandon the old representation of pathways and instead
work directly with the networks?” (Marcotte, 2001). Many
different methods for such pathway definitions have been
proposed to understand whole-cell metabolism, including
Ouzounis’s database definitions (Ouzounis and Karp,
2000), Schuster’s elementary flux modes (Schuster et al.,
1999, 2000), and Schilling’s extreme pathways (Schilling et
al., 2000). Such computational methods are essential for
providing the link between mathematics and biology. Ex-
treme pathways provide a unique way to define metabolic
pathways in the era of systems biology. The main chal-
lenges that currently face extreme pathway analysis are their
computation for genome-scale networks and the physiolog-
ical interpretation of the results.

The present study represents the first complete analysis of
the extreme pathway structure of a real metabolic system.
Previously, the extreme pathway algorithm has either been
applied to simple example systems for which the pathways
could be interpreted but were not physiologically relevant,
or to a genome-scale model for which the pathways were
most certainly meaningful but were simply too numerous to
individually interpret. The human red blood cell provides an
ideal test bed that combines simplicity with physiologic
significance. The results from the extreme pathway analysis
show that network structure and capacity constraints pro-
vide a strong basis for analysis and interpretation of the
physiology of the red blood cell metabolic network. Ge-
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FIGURE 5 Steady-state flux maps for all type I and type II red blood cell extreme pathways.
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FIGURE 5 (Continued)
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nome-scale metabolic networks can now be reconstructed
from genomic and other data sources (Covert et al., 2001a).
The use of extreme pathways for the analysis of such
reconstructed networks and their relation to whole-cell
functions will thus become critical in the advancement of
systems biology.
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